澳洲墨尔本论文代写:连续时间

小波理论适用于多个学科。所有的小波变换可以被认为是连续时间(模拟)信号的时间-频率表示的形式,因此相关的谐波分析。几乎所有实际有用的离散小波变换使用离散时间滤波器组。这些滤波器被称为小波和尺度系数的小波命名。这些滤波器组可能包含有限脉冲响应(FIR)或无限冲激响应(IIR)滤波器。形成一个连续的小波的小波变换(CWT)受制于傅里叶分析各自的抽样理论的不确定性原理:给定一个有事件信号,一个人不能同时指定确切的时间和频率响应规模的事件。时间频率响应尺度不确定性的乘积具有下界。因此,在这个信号的连续小波变换的尺度克,这样的事件标记的时间尺度平面上的整个区域,而不是只有一个点。此外,离散小波基可以被认为是在其他形式的不确定性原理的上下文中。小波变换是大致分为三类:连续、离散和multiresolution-based.above示图显示所有的连续小波变换(小波)、小波变换(Discrete Wavelet)。这些都随时间和水平而变化,并获得所有图所示。
澳洲墨尔本论文代写:理论适用于多个学科
Wavelet theory is applicable to several subjects. All wavelet transforms may be considered forms of time-frequency representation for continuous-time (analog) signals and so are related to harmonic analysis. Almost all practically useful discrete wavelet transforms use discrete-time filter banks. These filter banks are called the wavelet and scaling coefficients in wavelets nomenclature. These filter banks may contain either finite impulse response (FIR) or infinite impulse response (IIR) filters. The wavelets forming a continuous wavelet transform (CWT) are subject to the uncertainty principle of Fourier analysis respective sampling theory: Given a signal with some event in it, one cannot assign simultaneously an exact time and frequency response scale to that event. The product of the uncertainties of time and frequency response scale has a lower bound. Thus, in the scale gram of a continuous wavelet transform of this signal, such an event marks an entire region in the time-scale plane, instead of just one point. Also, discrete wavelet bases may be considered in the context of other forms of the uncertainty principle. Wavelet transforms are broadly divided into three classes: continuous, discrete and multiresolution-based.Above shown diagram shows all CWT (Continuous Wavelet), DWT (Discrete Wavelet). These all varies with the time and level and all graphs obtained are above shown.

登录注册 留言